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Abstract

We present two methods for synthesizing finite linear temporal logic (LTL;) specifications
from labeled traces of system behavior. The first method reduces the problem to a partial
maximum satisfiability problem (PMAX-SAT). The second method, NeurallLTL s, introduces
a novel recurrent neural operator designed to imitate the function of LTL; operators. We
train networks composed of the neural operator to classify the traces. Then, we extract
an LTL; formula from the learned weights by discretizing the activations of the network.
We evaluate our methods on synthetic data, comparing their scalability with respect to
formula size as well as their robustness to noisy data.

Disclaimer: This thesis is based on collaborative work with Daniel Ritter, Carl Trimbach,
and Michael Littman [27].



1 Introduction

Demonstrations are a fundamental tool for teaching humans skills. However, leveraging
demonstrations for teaching artificial agents presents a number of challenges. One chal-
lenge lies in choosing the agent’s internal representation for the demonstrated behavior. A
number of avenues have been explored, including learning a policy directly by behavior
cloning or learning a reward function by inverse reinforcement learning [2]. However,
both policies and reward functions can be uninterpretable. They may employ a significant
number of parameters, which makes it difficult to easily understand the behavior they
produce. Finite linear temporal logic (LTL;) provides an alternative, more interpretable
representation for sequential behavior since LTL ; formulas closely map to natural language
[8]. Moreover, LTL; formulas are symbolic representations that allow for high-level reason-
ing and manipulation. In this thesis, we examine the problem of learning an LTL ; formula
from labeled traces of behavior.

Definition 1 (LTL; Learning Problem). Given a set of finite length positive traces, I1p, and a
set of finite length negative traces, I1y, produce a compact LTL formula satisfied by the positive
traces and violated by the negative traces.

There are a number of motivations for the LTL; learning problem. LTL learning is
useful in general classification tasks on sequential data. While recurrent neural networks
are highly effective at processing time series data, interpreting the functions they learn is
typically impossible. LTL, learning is useful in sequential classification problems where
one requires that the learned classifier is human-understandable or suitable for efficient
reasoning and manipulation.

In formal methods, LTL; learning is central to the task of specification mining or ex-
tracting temporal logic formulas from the execution traces of programs [16]. These specifi-
cations can be used to formally verify the correctness of the programs. In a related formal
methods application, LTL learning can provide formulas for reactive synthesis, or the
automated construction of finite-state machines where all executions satisfy a temporal
logic specification [5].

Finally, as discussed initially, LTL; learning is useful for teaching an artificial agent
from demonstrations. Prior work on learning from demonstration has focused on learning
policies, reward functions, or dynamics models [2]. However, such representations are not
as interpretable as LTL; formulas nor as suitable for symbolic manipulation. Additionally,
these representations depend on the states of a specific environment, so transferring them
to new environments is non-trivial. LTL; on the other hand, is environment-independent
[18]. With an LTL; formula, one can derive rewards for an environment that maximize the
probability of satisfying the formula [3, 13, 17].

Several prior approaches have reduced the LTL learning problem to a SAT problem
[4, 20]. With highly-optimized SAT solvers, these methods can quickly produce small
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formulas when given a small number of traces. However, since the size of the SAT problem
scales exponentially with the number of traces and allowed length of the LTL ; formula, these
methods can become computationally intractable. Additionally, Camacho and Mcllraith
[4]’s SAT method fails when given traces that are not perfectly separable with a formula of
the specified size, as if often the case when the data are noisy.

We describe a modification to Camacho and Mcllraith’s method where we encode the
LTL; learning problem as a partial maximum satisfiability problem (PMAX-SAT). This
modification allows the method to find optimally accurate formulas even when no formula
of the specified size perfectly classifies the data. Then, we introduce a new method for LTL
learning, called NeuralLTL. In the first phase of NeurallLTL, we train a neural network
consisting of a specialized recurrent operator on the traces. After training the network,
we discretize its activations and extract an LTL; formula that we simplify using logic-
minimization techniques. We test the PMAX-SAT method and NeurallLTL; on synthetic
data. We find the PMAX-SAT method and NeuralLTL; can produce formulas on noisy data
where the SAT method times out, and Neurall TL ; scales to produce larger formulas than
either of the SAT-based methods.

1.1 Related Work

Camacho and Mcllraith [4] reduce the LTL learning problem to a SAT problem and their
method is the basis of our PMAX-SAT approach. Their SAT encoding is described in more
detail in Section 3.1. Neider and Gavran [20] similarly reduce the problem to SAT, however
they also show a technique for combining their SAT encoding with decision trees that scales
effectively to larger trace sets. Kim et al. [ 14] define a Bayesian probabilistic model where
a maximum a posteriori estimate corresponds to a solution to the LTL; learning problem.
However, they use LTL; templates to reduce the space of possible formulas. Our methods
produce formulas in the full space of LTL;.

Also related to NeuralLTL is the well-studied problem of extracting a finite-state ma-
chine from a learned RNN. Recently, Michalenko et al. [ 19 ] showed a strong correspondence
between the internal representations of RNNs trained to recognize a regular language and
the state of the minimal DFA for the language. The correspondence justifies a number of
attempts to decode the hidden state activations of an RNN into the states of a DFA, largely
via clustering algorithms [7, 21], although Weiss et al. [28] achieved high accuracy by
treating the RNN as an oracle for active learning. NeurallLTL is similar to these approaches
in its goal of extracting a formal language representation from an RNN, but its formula
extraction procedure is specialized for LTL;.



2 Linear Temporal Logic

Linear temporal logic (LTL) is a type of logic that allows for reasoning about the behavior of
a system through time [23]. LTL augments propositional logic with temporal operators that
specify when a proposition holds. Accordingly, LTL formulas are evaluated over sequential
data or traces. A trace is a sequence of truth assignments to a set of propositions. A trace
may satisfy or violate an LTL formula. LTL is defined on infinite-length traces, however
some systems are more accurately modeled with finite-length traces. LTL is a variant of
LTL defined on finite-length traces [¢], and LTL; is the focus of this thesis.

An LTL; formula can be evaluated at every timestep ¢ of a trace where 0 <t < T and
T is the trace length. 7,¢ |= ¢ denotes that the formula ¢ holds at timestep ¢ in trace .
However, a trace satisfies a formula only when the formula holds at the initial timestep.
That is, 7 satisfies ¢ when 7,0 = ¢.

All temporal operatorsin LTL; are derived from the two fundamental temporal operators
next (X) and until (U). The fragment of LTL; consisting of only next and next-derived
operators is called metric LTLy, and the fragment consisting of only until and until-derived
operators is called qualitative LTL; [12]. X ¢ denotes that ¢ will hold in the next timestep,
while ¢ U ¢ denotes that ¢ must hold until ¢) becomes true:

mtEX¢p <= mt+lEdandt+1<T
mtEUY < m kY forsomet <k<T
and7,j E¢forallt <j<k.

The operators eventually (F), globally (G), release (R), and weak until (W) are all
derived from until.
F¢ < trueUo

Gp <= —~F-¢
PRY = (=9 U-v)
PW1p <= (pUy) vV Go
The operator weak next (N), unique to LTLy, is derived from next.

N < XopV -~ Xtrue

In LTLy, = Xtrue holds at only the last timestep, so N ¢ denotes that ¢ must hold at the next
time step or the next time step does not exist. Table 1 gives a summary of each operator’s
semantics.

Finally, we define the length of an LTL; formula.

Definition 2 (Length of an LTL; formula). The length of an LTL; formula is the sum of the
number of temporal operators, binary logical operators, and propositions in the formula.



Table 1: LTL; operators and their natural language equivalents.

LTL; Operator | Symbol | Natural Language
Until Uy | ¢ holds up to, but not necessarily including,
the point where 1) becomes true.
Weak until ®W1 | ¢holdsup to, but not necessarily including, the
point where ¢) becomes true, or ¢ holds forever.
Next X¢ | ¢ holds in the following timestep.
Weak next N ¢ ¢ holds in the following timestep, or the current
timestep is the last timestep.
Eventually Fo ¢ holds at some point in the future.
Globally Go ¢ holds at the current and all subsequent
timesteps.
Release »R% | ¢ holds up to and including the point where ¢

becomes true, or 1) holds forever.




3 Methods

3.1 Partial MAX-SAT

Camacho and Mcllraith [4] reduce the LTL learning problem into a Boolean satisfiability
(SAT) problem. We investigated a modification to the approach where we instead reduced
LTL; learning to partial maximum satisfiability (PMAX-SAT).

3.1.1 Reduction into SAT

The goal in a SAT problem is to find a setting of the variables in a Boolean formula such
that the formula evaluates to true. Given a set of labeled traces, Camacho and Mcllraith
produce a Boolean formula, h, where a satisfying assignment of the variables corresponds
to an LTL; formula that distinguishes the traces. Then, they use a SAT solver to find a
satisfying assignment to / from which they recover the LTL; formula, ¢.

Their procedure for encoding the LTL; learning problem into SAT is based on the
correspondence between LTL; formulas and automata. Specifically, any LTL; formula
can be converted into an alternating finite automaton (AFA) that accepts and rejects the
same traces as the formula [26]. However, the converse does not hold. Not every AFA
can be converted into an equivalent LTL; formula. Camacho and Mcllraith define a set
of AFA skeletons that correspond to LTL; operators. A skeleton is a fragment of an AFA
that performs the same operation as an LTL operator. AFA skeletons can be fit together
to compose a full AFA and, importantly, AFA constructed from skeletons can always be
converted into equivalent LTL ; formulas.

Camacho and Mcllraith’s SAT encoding procedure models the process of constructing
an AFA from AFA skeletons. Given a maximum formula size N, the procedure first defines
a series of Boolean variables that determine which /N skeletons will be used and how they
tit together. Then, the procedure constructs a Boolean formula, %, consisting of a series of
clauses over these variables. One set of clauses enforces that the AFA is well-constructed.
Another set of clauses restricts the size of the AFA, and thus the size of the corresponding
LTL; formula. Finally, another set of clauses ensures the AFA accepts the positive traces and
rejects the negative traces. h is given to a SAT solver which finds a satisfying assignment to
the variables. The skeletons used in the construction of the AFA are determined from this
variable setting and the corresponding LTL; formula is recovered.

3.1.2 Learning Algorithms

Camacho and Mcllraith examine the applications of their method to both passive and active
learning. Passive learning models the traditional classification setting where the task is to
tind a hypothesis that distinguishes a set of positive and negative examples. They define



an algorithm for passive learning that ensures their method produces the minimum size
formula that classifies the traces. The algorithm incrementally increases the formula size,
N, given to the SAT encoding procedure until the SAT solver finds a satisfying assignment
(Algorithm 1).

Algorithm 1 Passive Learning

Input: trace sets IIp and Iy
N +1
h < SAT encoding of IIp and Il y for formula size N
while / is unsatisfiable do
h < SAT encoding of II» and Il for formula size N
N+ N+1
end while
return LTL; formula, ¢, recovered from satisfying assignment for h

They also define an active learning algorithm. Active learning assumes access to an
oracle that answers membership queries and equivalence queries. Membership queries simply
ask whether a trace satisfies the target formula. Equivalence queries ask whether a formula
is equivalent to the target formula. If the formula is not equivalent, the oracle provides
a counterexample: a trace on which the guessed formula and target formula disagree.
The active learning algorithm uses the passive learning algorithm as a subroutine. The
algorithm begins by performing passive learning on empty positive and negative trace
sets, I[Ip and IIy. The resulting output formula is used in an equivalence query to the
oracle, which gives a counterexample if the output formula is not equivalent to the target
formula. The counterexample is added to the trace sets and the process repeats until the
target formula is found (Algorithm 2).

Algorithm 2 Active Learning

Input: Oracle for a target formula
N «+1
I[p 0
Iy <0
¢ < formula output from passive learning on IIp, IIx
while ¢ is not equivalent to the target formula do
7 < counterexample provided by the oracle
Add 7 to IIp or I1x
¢ < formula output from passive learning on IIp, ITx
end while
return ¢




We used the passive learning setup for Camacho and Mcllraith’s method in our experi-
ments (Section 4).

3.1.3 PMAX-SAT Modification

A limitation of Camacho and Mcllraith’s approach is that the SAT solver is unable to
produce any formula if the trace sets are not distinguishable with a formula of the specified
size, N. This limitation prevents the application of the method to noisy data. We would like
a method that produces a formula of size N or below that achieves the the best accuracy
possible on the trace sets, which may not be 100%. In terms of the SAT encoding, we want
the solver to satisfy the maximum number of clauses that correspond to accepting the
positive traces and rejecting the negative traces. However, we still need to ensure the solver
satisfies the clauses that enforce the validity and size of the AFA. The partial maximum
satisfiability problem (PMAX-SAT) describes the task of satisfying the maximum number
of a set of “soft” clauses, while also satisfying a set of “hard” clauses [6]. We implemented
a modification of Camacho and Mcllraith’s approach based on PMAX-SAT. We labeled all
the clauses that enforce the acceptance and rejection of positive and negative traces as soft
and the rest of the clauses as hard. We then switched the SAT solver with a PMAX-SAT
solver. In this way, the satisfying assignment produced by the solver corresponds to the
formula that achieves the optimal accuracy on the trace sets. We used the passive learning
algorithm for this PMAX-SAT variant in our experiments. Section 4 shows the results.

3.2 NeurallTL;

The semantics of LTL; presented in Section 2 suggest a connection to recurrent neural
networks. Particularly, the evaluation of an until or until-derived operators recursively
depends on their evaluation at future timesteps. Based on this connection, we define a
recurrent neural operator that imitates the application of temporal operators in LTL;. We
take the simple RNN operator and remove the hidden layer so that the recurrent input
directly reads from the output at the previous timestep, simulating the operation of an
until operator. We also apply the operator to two timesteps at a time, analogous to a 1D
convolution with a filter width of two. This modification simulates the manner in which
next operators specify behavior one timestep into the future. Finally, we apply the recurrent
operator backwards along the trace to model how temporal operators depend on their
evaluation at future timesteps. Equation 1 provides a formal definition of the operation.
Using the terminology of convolutional neural networks, we call the weights of our
operator a filter [11]. We can compose multiple filters into the layers of a network. In this
way, filters are applied to the results of previous filters, similar to the nesting of operators
in an LTL; formula. The input to the network is a trace where the truth values of the
trace are interpreted as 0 and 1 for true and false. The output of the network is a sequence
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Input trace
BxT)

2 filters
(2xT)

1 filter
(1xT)

. Predicted label

Figure 1: A NeuralLTL; network that encodes the formula (a Ub) A F c. Solid boxes are the
input trace and output activations. Dashed lines represent the application of the filters.
The formulas in the dashed boxes represent formula fragments learned by each filter.

representing the network’s prediction of the truth value at every timestep of the trace. Just
like an LTL; formula, we take the first timestep of the output sequence to be the predicted
label of the trace. We compare the predicted label against the target label to compute a loss
that we minimize via gradient descent. Figure 1 provides a visual overview of a NeurallLTL;
network. After the network is trained, the filter weights represent a continuous version
of an LTL; formula that classifies the traces. We discretize the activations of the trained
network to extract an LTL; formula.

3.2.1 Network Weights

A filter is composed of sets of weights that allow for the expression of both qualitative
and metric temporal operators. While layers in the network can consist of multiple filters,
we restrict the last layer to a single filter so that the output consists of a single truth value
per timestep. Filters act on sequences of values for a set of variables, indexed by j. These
variables might be the propositions in the input trace, in the case of the first layer, or the
activations of the filters in a previous layer. We use var(l, i, t) to denote the activation of
filter 7 at timestep ¢ in layer /, and we define the input trace as var(0, i, t). The weights of a
filter are defined as follows.

e Wp(l,i,7) is the propositional weight of filter 7 in layer [ for variable j and allows for
the expression of standard logical operators.
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Wa(l, 4, j) is the metric weight of filter ¢ in layer [ for variable j and allows for the
expression of metric temporal operators.

Wo(l, i) is the qualitative weight of filter 7 in layer / and allows for the expression of
qualitative temporal operators.

b(l, ) is the bias term for filter 7 in layer /.

var(l — 1,7, 7+ 1) and var(l,i,7 + 1) are base case values.

We apply the weights of a filter to a sequence using the following formula.

var(l,i,t) = a( ZWp(l,i,j)var(l —1,75,t) + (1)
j
> Wu(lyi, j)var(l —1,5,t + 1) +

J

S(Wo(l,i))var(l,4,t + 1) + b(l, z’))

The nonlinear activation function, o, is the sigmoid. We also apply the function §(z) =
max(x, ax) to the Wy weight, where « is a hyperparameter. ¢ biases W, towards positive
values since we require that W, is positive for formula extraction (Section 3.2.2). Each
filter is a linear classifier that predicts a truth value at a timestep based on the the values of
the propositions at the current timestep, the values of the propositions at the next timestep,
and the recursive output of the filter at the next timestep. The base case values for the
recursion, var(l — 1,5,7 + 1) and var(l,i,7" + 1), are parameters learned along with the
weights.

Filters can represent all LTL; operators as well as standard logical operators (Table 2).
However, because the weights are continuous, a filter may also represent operations that
do not cleanly map to a temporal operator. When training the network we employ several
techniques to minimize this undesirable outcome (see Section 3.2.4).

3.2.2 Conversion from Network Weights to Formula

We now describe a procedure for extracting an LTL; formula from a trained NeurallL TL
network. The procedure consists of two steps. First, we convert the weights of each filter
into an intermediate representation we call a temporal truth table. Then we convert the
temporal truth tables into an LTL; formula.

A temporal truth table, f, represents a discrete approximation of the function encoded
by a filter. The table restricts all input and output of the filter to {0, 1}. The rows of the table
record all the possible discrete inputs to the filter along with the corresponding discrete
tilter output. The table has columns for the values of each of the n propositions at the
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Table 2: Example filter weights for LTL; operators. We show one NeurallTL; filter, i,
applied to two truth value sequences representing the LTL; formulas ¢ and ). Weights
that can take any value are marked with —. We abuse notation and use W (, i, ¢) to mean
the weight applied to the truth value sequence representing ¢.

Op. |Wp(l,i,¢) | Wp(l,i, ) | War(li, ¢) | War (1 d,00) | Wo(l, i) | b(1,4) | var(l — 1,¢, T + 1) |var(l,4, T + 1)
U 1 2 0 0 1 |-15 - 0
dW1p 1 2 0 0 1 |-15 - 1
X ¢ 0 0 1 0 0 |-05 0 -
N ¢ 0 0 1 0 0 |-05 1 -
Fo 1 0 0 0 1 |-05 - 0
Go 1 0 0 0 1 |-15 - 1

current timestep, x;, the values of propositions at the next time time step, m,, and a column
representing the output of the filter in the next time step, 7. We call z;, m;, and 7 the
propositional, metric, and temporal bits respectively. To create a discrete filter output we
set the activation function, o, to the binary step function, 1y ... We also set 6(z) = max(x,0)
since we require that W, is positive to create a valid truth table (discussed later).

Then, filling in the temporal truth table for a filter involves applying each row of discrete
input to the filter weights and recording the discrete output, multiplying x; with Wp, m;
with Wy, and 7 with Wy. Additionally, separate from the table, we define additional bits €2
and w;, derived by applying the binary step function to the base case values var(l,,7 + 1)
and var(l — 1,7,7 + 1). The result of the first step is a table, f, and the bits 2 and w.
Algorithm 3 describes the first step. Table 3 gives an example temporal truth table.

The second step converts f, €2, and w into an LTL; formula. Specifically, we derive an
LTL; formula in a form we call temporal normal form (TNF). TNF describes a formula in the
form ¢ Uy or ¢ W 1. ¢ and ¢ are formulas in full disjunctive normal form [24] over the set
of all propositions and all propositions prepended by a next (X) or weak next operator (N).
That is, ¢ and ¢ are a disjunction of conjunctions where each proposition, along with each
proposition prepended by a next or weak next operator, appears exactly once.

First, we use (2 to determine whether the formula will be in the form ¢ U ¢ or ¢ W ). We
use U if Q = 0and W if Q = 1. Q records the filter’s behavior at the end of the trace, which
determines whether an until operator is weak or strong. Then, we construct ¢ by taking
the disjunction of the conjunction of all the propositional and metric bits in rows where
the outputis 1 and 7 = 1. ¢ represents all the inputs that result in true when the output
of the filter in the next timestep is true. We construct v by taking the disjunction of the
conjunction of all the propositional and metric bits in rows where the outputis 1 and 7 = 0.
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Algorithm 3 Convert Filter to Temporal Truth Table
Input: filter layer [, filter index i, trace length 7', number of variables n
f + empty truth table
Q <« o(var(l,i, T + 1))
forje{l...n}do
wj «o(var(l—1,7,7 +1))

end for
for k € {0,1}*"" do
T1,T2, ... Ty, My, Mo, ..., My, T < k

end for
return f, Q, w

Table 3: A temporal truth table for the formula z; U 5. This table is an example of an ouput
of Algorithm 3 and the input to Algorithm 4. Rows where the output is 0 are omitted for
brevity.
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1 represents all the inputs that result in true no matter the future value of the filter. Metric
bits, m;, in ¢ and v take the form Xz; if w; = 0 and N z; if w; = 1, since whether a next
operator is weak or strong is determined by behavior at the end of the trace. Rows where
the output is 0 have no effect on the LTL; formula. Algorithm 4 describes the second step.

Example of Conversion Procedure As an example, we will carry out the conversion pro-
cedure for a filter that represents the LTL; formula z; U z5. We assume the filter has the
weights listed in the first row of Table 2. First, we create a temporal truth table, f, by
evaluating the filter for every setting of the propositional, metric, and temporal bits (x;, m;
and 7). We evaluate the filter using a discrete version of Equation 1, where ¢ is the binary
step function and ¢(x) = max(0, z):

f[l{?] = O'(EJWP(Z, Z,j)],’] -+ EJWM(Z,Z,j)mJ -+ 5(WQ(Z, Z))T + b(l,l))

Consider the bit setting x; = 1,2z, = 0,m; = 0,my = 0,7 = 1. Plugging in this bit setting
along with the filter weights we have:

flk)]=0((1-140-2)4+(0-0+0-0)+0(1)-1—1.5) =0(0.5) = 1.

Thus, the output column for this bit setting in the temporal truth table is set to 1. We also
apply the binary step function to the learned base case values of the filter, var(l,7,7 + 1)
and var(l — 1,7,7 + 1), to produce 2 and w; respectively. For the sake of the example, we
will assume var(l,7,7 + 1) and var(l — 1, j, 7 + 1) are 0, even though the first row of Table 2
states they can take any value for this filter.

Q=o(var(l,7,7+1)) =0(0) =0

wy =o(var(l—1,1,74+1)) =0(0)=0 wy=0c(var(l—1,2,7+1))=0(0)=0

Table 3 shows the completely filled in table. We then convert the temporal truth table into
an LTL; formula. Since €2 = 0, we know the formula will use an until operator and have
the form ¢ U v¢. Now, we need to determine the sub-formulas ¢ and . Each row in the
temporal truth table with output 1 contributes a clause to ¢ or . Let’s once again consider
the row corresponding to the bit setting: x; = 1,2, = 0,m; = 0, my = 0,7 = 1. This row
represents the clause:

x1 A =g A (X—zp) A (X—g).

We use the next (X) operator to represent the metric bits, rather than the weak next (N)
operator, because w; = 0 and w, = 0. We add this clause to ¢, rather than 1), since 7 = 1.
So, we have:

d=...V(xg Aza A(X=z) A(X=ma)) V...

Repeating the process for every row with output 1 in the table results in the complete
sub-formulas ¢ and ). We now have a TNF formula, ¢ U ¢, that simplifies to z; U z.

14



Algorithm 4 Convert Temporal Truth Table to Formula

Input: number of vars n, temporal truth table f, 2, w
¢ < False
1) < False
for k € {0,1}*"" do
T1,T2, ... Ty, My, Mo, ..., My, T < k
if f[k] =1 then
c < True
forje{1...n}do
if r; = 1 then
bj < z;
else
bj  —x;
end if
if m; = 1 then
dj < x;
else
d;j < —x;
end if
if w; = 1 then
ccANbjANd;
else
ccNbjANXd;
end if
end for
if 7 =1 then
o< dVc
else
Y+ 1YVe
end if
end if
end for
if 2 = 1 then
return ¢ Wy
else
return ¢ U ¢
end if
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3.2.3 Correctness of Conversion Procedure

First, we will show that every temporal truth table output by the conversion procedure can
be converted into some LTL formula. The conversion procedure does not create invalid
temporal truth tables or tables that encode logically impossible LTL ; formulas.

Theorem 1. The conversion of a Neural L TL filter into a temporal truth table always results in a
valid table.

Proof. A temporal truth table encodes a logically impossible formula if it contains a setting
of the x; and m; bits where the outputis 1 when 7 = 0 and the output is 0 when 7 = 1. This
table encodes an LTL ; expression where a setting of the propositions satisfies the expression
(output is 1), no matter the expression’s value in the next timestep (7 = 0). But the same
setting of the propositions violates the expression (output is 0), if the expression holds in
the next timestep (7 = 1). In other words, this table encodes a TNF formula (¢ {U, W} )
where a clause appears in 1 but explicitly does not appear in ¢. But, according to the
semantics of LTLy, any clause that appears in v is implicitly in ¢.

Now, we show that such a table cannot result from the conversion procedure. Consider
the equation used to compute the output column, f, of the temporal truth table given a
setting, k, of the z;, m; and 7 bits (Algorithm 3).

f[/{?] = O'(Eij(l,i,j)l’j + EJWM(Z,Z,j)TTLJ -+ (5(WQ(Z,Z>)T + b(l, Z))

Consider two settings of the bits, k; and k,, where f[ki] = 0 and f[ks] = 1. k; and k, are
identical except 7 = 1in ky and 7 = 0 in k,. Thus, k; and &, encode a logically impossible
LTL; expression. However, this situation implies:

flka] < flko].
Substituting the definitions of f[k;] and f[k»] and canceling identical terms gives:
S(Wall, 1)) - 1 < 6(Wo(l,1)) -0

5(Wo(l,i)) < 0.

But, since §(x) = max(0, z) during the conversion procedure, 6(W(l,)) is never less than
0. Since the conversion procedure cannot create temporal truth tables with these settings,
the procedure only creates valid tables. O

A correct conversion procedure is also LTL j-expression preserving. That is, encoding an
LTL; formula in TNF as a temporal truth table and then converting the truth table into an
LTL; formula should result in a formula equivalent to the starting formula. By equivalence,
we mean logical equivalence denoted by the operator = [24]. In the context of LTL;, g = h
if g and h have the same truth value on every trace.
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Theorem 2. The conversion procedure is LTL p-expression preserving. Given any LTLy expression
g in TNF and its temporal truth table f, running the conversion procedure on f results in an LTL;
expression h, and g = h.

Proof. We can create a temporal truth table, f, for a TNF LTL; formula g by evaluating g for
every setting of the =, m;, an 7 bits in the table. Then, we can create a TNF LTL; formula
h by running the conversion procedure on f. Assume that g does not equal h. That is,
there exists a trace that satisfies g and violates h or vice versa. It follows that g and & are
syntactically different. If they were syntactically identical, they would accept and reject the
same traces. However, since g and & are in TNF (¢ {U, W} ), they are structurally similar
and their syntax can only differ in two ways. Either (1) g and & have syntactically different
¢ and v, or (2) g and h differ in the choice of U versus W.

In TNE, ¢ and 7 are in full disjunctive normal form. So if g and h have syntactically
different ¢ and 1, then one has a disjunct in ¢ or ¢» where the other does not. Without
loss of generality, assume ¢ has a disjunct that 4 does not. This situation implies the row
corresponding to the disjunct in f has output 1, since f was derived from g. But, according
to the conversion procedure, h would also include the disjunct if the output of the row was
1, so there is a contradiction.

g and h may differ in the choice of U versus W. Without loss of generality, assume ¢
has U and ~ has W. Then, Q2 = 0, since (2 is derived from ¢g. However, according to the
conversion procedure, if {2 = 0, then h should have U, so there is a contradiction.

Thus, g and h cannot differ and the conversion procedure is LTL s-expression preserving.

O]

Because the conversion procedure does not create invalid truth tables and is LTL -
expression preserving, the procedure is correct.

3.24 Implementation Details

We implemented NeuralLTL; in Tensorflow [1]. We used a binary cross-entropy loss opti-
mized with Adam [15]. Additionally, we use several techniques that increase the accuracy
and compactness of the formulas output by NeuralLTL;.

Logic Minimization The TNF formulas output by the conversion procedure are typically
too large for readability, so we employ a two-stage simplification procedure. We use the
Espresso logic-minimization algorithm to initially simplify the formula using standard
propositional logic simplification rules [25]. While not guaranteed to find the minimally
sized formula, the Espresso algorithm uses heuristics to find close-to-optimal simplifica-
tions of formulas with large numbers of propositions more efficiently than exact methods.
Then, we use the Spot LTL; library to simply the formula according to LTL; simplification
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rules '. In our experiments, the average percent reduction in formula size by Espresso was
91% and the average percent reduction by Spot was 51%.

Annealing and Random Restarts The conversion procedure discretizes the function rep-
resented by a trained NeurallLTL; network, leading to some information loss. However, we
can train the network in a way that encourages learning a function that maintains high
classification accuracy when discretized. Since the conversion procedure switches the
sigmoid activation function, o, to a binary step function, we linearly increase the steep-
ness of the sigmoid after each epoch. Similarly, since the conversion procedure switches
d(z) = max(z, ax) with 6(z) = max(z,0), we linearly reduce « after each epoch. That is,
we define o and ¢ as

o(x) and 4(x) = max(z, ax).

T 1t b
Given annealing rates oy and 3,;, we update the values of o and 3 at the end of each epoch
by setting o = a + oy and 3 = 8 + 3,;. We also use random restarts, training the network
multiple times with different random weight initializations. We select the trained network
that has the highest accuracy after discretization.

Multiple Networks While NeuralLTL; does not depend on matching the structure of the
network to the structure of the formula one expects to learn, a larger network has a greater
risk of producing a formula that overfits the training data. Since the size of the minimal
formula that describes the data is not known beforehand, we train several different network
architectures on a given dataset to increase the probability of producing a formula close in
size to the optimal formula. After extracting formulas from each network, we choose the
smallest formula of the set of formulas with the highest accuracy on the test data.

1Spot is designed for LTL rather than LTL¢, but we show in the Appendix that we use Spot correctly for
our experiments.
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4 Experiments

Our experiments compared Camacho and Mcllraith [4]’s SAT-based method, our PMAX-
SAT modification, and NeurallLTL; on two criteria: (1) scalability with respect to LTL;
formula size and (2) robustness to noisy data. Accordingly, we tested the methods on
synthetic data that models LTL; formulas of varying sizes as well as a noisy version of the
dataset.

4.1 Data

To create the synthetic data, we generated random qualitative LTL ; formulas over 3 variables
by a uniform sampling of the LTL; grammar. We generated 50 of each length ranging from
2 to 15 (see Definition 2 for how we calculate formula length), or as many as possible if the
number of unique formulas for a given length was less than 50. Since our goal was to test
the methods’ ability to produce LTL; formulas, we rejected formulas that did not include a
temporal operator, meaning there were no formulas of length 1.

Then, we generated traces that modeled each formula. We initially used simple rejection
sampling, uniformly sampling traces and adding them to the positive or negative set
depending on whether they satisfied the formula. However, we found that traces generated
in this way did not fully represent the complexity of the target formula. All the methods
were able to find short formulas with high classification accuracy, even on synthetic data
for much longer formulas. Since our goal was to test the methods” ability to produce larger
formulas, we turned to a new data generation technique where we mixed random rejection
sampled traces with the characteristic sample (CS) for the formula’s corresponding minimal
deterministic finite-state automaton (DFA).

Definition 3. A characteristic sample (CS) is the minimal set of labeled traces that uniquely defines
a minimal DFA over a fixed number of states, N.

By definition, the characteristic sample includes traces that are informative of each part
of the target formula. So using the CS in the dataset prevents the methods from achieving
perfect classification accuracy with a formula that has a simpler DFA representation than
the target formula. To create the training data, we mixed the characteristic sample with
rejection sampled random traces such that |IIp| = |IIx| = 500 for all formulas. To create
the test data, we resampled the random traces for each formula. We swapped 1% of the
labels to produce a noisy version of the training data.

We produced all the the random traces at length 15, and each trace in the characteristic
samples was padded to length 15 by repeating the last timestep. Padding a trace is guaran-
teed not to change its truth values with respect to a qualitative formula, since qualitative
formulas define stutter-invariant languages [22 ]. However, padding may change the truth
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Table 4: The 3 NeurallLTL; network architectures used in the experiments. The filter
assignments denote the number of filters in each layer with the input layer on the left and
the output layer on the right.

Network | Layers | Filter Assignment

1 1 1
2 2 3—1
3 3 5—5H—1

values of traces with respect to metric formulas. Because of the difficulty in training an
RNN on variable length data, we chose to only use qualitative formulas in our experiments.
We modified both NeuralLTL; and the SAT-based methods to only produce qualitative
formulas, removing the metric weights from NeurallLTL; and the weak and strong next
operators from the SAT encoding.

4.2 Procedure

We limited each method to 5 minutes per target formula. For NeuralLTL;, 5 minutes was
sufficient to train 3 different network architectures (Table 4) for 3000 epochs with 1 random
restart, though we halted training early if a network reached 100% discrete classification
accuracy. The 3 network architectures were chosen to loosely cover the structure of the
formulas we expected to learn, with 1 to 3 layers and 1 to 5 filters per layer. We used a
batch size of 100, a learning rate of 0.005, and we set the annealing rates for o and § as
Bq = 0.01 and g = -7e-5.

We implemented the SAT-based methods with the Z3 SAT solver [Y]. If a SAT-based
method timed out on a trace set, we defaulted to the formula true which has 50% accuracy
on the synthetic trace sets. We conducted the experiments on Debian machines with Intel
Core i5-4690 CPUs at 3.5 GHz and 8 GB of RAM.

4.3 Results

Figure 2 shows the test set classification accuracy of NeuralLTL;, Camacho and Mcllraith
[4]’s SAT approach, and our PMAX-SAT variant after training on the original and noisy
training data. NeuralLTL; produced formulas with slightly higher accuracy than PMAX-
SAT over all target formula lengths. The SAT method began timing out on almost all trace
sets past a target formula length of 3, since our experiments consisted of significantly more
challenging learning problems than those tested by Camacho and Mcllraith. Camacho and
Mcllraith test the scalability of their method using an active learning setup (see Section
3.1) on a maximum of 40 traces, while our experiments used a passive learning setup with
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Figure 2: Test set classification accuracy. An accuracy of 50% for the SAT method indicates
the run timed out. 95% confidence intervals shown.

1000 traces. We also attempted to learn formulas up to length 15 while they only attempt
up to length 11.

Both NeuralLTL; and PMAX-SAT were largely unaffected by training on the noisy data.
Both methods obtained approximately the same classification accuracy in the noisy setting
as they did in the non-noisy setting. However, the SAT method failed to produce any
formulas over all target formula lengths on the noisy data. This failure was expected
because the SAT method is restricted to producing formulas with perfect accuracy on the
training data. A minimum length formula that accommodates the 1% noise in the training
data may be impractically large.

In Figure 3 we calculated the proportion of output formulas from each method that had
zero-loss, or those that correctly classified every trace in the test set. This proportion was
nearly identical for the SAT and PMAX-SAT methods, which indicates that in every case
where the SAT solver could find a perfect formula, the PMAX-SAT solver could as well.
NeurallTL; found significantly more zero-loss formulas over all target formula lengths.

While the PMAX-SAT method produced formulas that had only slightly worse accu-
racy than NeurallLTLy, inspection of the output formulas of both methods reveals that
NeurallLTL; produced significantly longer formulas (Figure 4). In fact, PMAX-SAT was
unable to produce a formula above length 3, even on the trace sets for target formulas of
much greater length. The longer formulas produced by NeurallLTL better fit the data and
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Figure 3: The percentage of output formulas that perfectly classified the test set. 95%
confidence intervals shown.

achieved higher accuracy. For example, when given the trace sets for the target formula
bV G—-aV (bRa), the SAT method timed out and the PMAX-SAT method produced the
formula b, which gave 91% accuracy. However, NeurallLTL; produced the exact target
formula, b V G—-a V (bRa). A short formula, like b, may achieve high accuracy on our
synthetic data, but fails to capture the complexity of the target formula. NeuralLTL; found
formulas that more closely matched the complexity of the target formulas.

However, in some cases NeuralLTL ; produced very large formulas that clearly overfit the
data. As an example, when given the trace set for the target formula a V G —¢, a NeuralLTL,
network produced the formula

(aV(((aAN=c)V(=bA=¢c))ANG=c)) R (aV ((aV (bA=c))AG—e)V (((aA—c)V (=bA—=c)) NG —c)).

This formula perfectly classified the data but is not human-readable. In order to discount
formulas of this nature, we set a maximum formula-size threshold of 25. When selecting
an output formula from those produced by the 3 networks we trained for each trace set
(Table 4), we ignored those larger than 25.

In summary, NeurallLTL; produced formulas that were only slightly more accurate than
PMAX-SAT, and both NeurallLTL; and PMAX-SAT were unaffected by noise. However,
NeuralLTL; produced significantly more zero-loss formulas as well as formulas that better
captured the complexity of the target formulas. Camacho and Mcllraith [4]’s SAT method
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Figure 4: Output formula lengths for NeuralLTL; and PMAX-SAT on the non-noisy data
with 95% confidence intervals shown.

mostly timed out on the non-noisy data and completely timed out on the noisy data.
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5 Discussion

We presented two approaches to the LTL; learning problem. First, we improved the
performance of an existing SAT approach by recasting it as a PMAX-SAT problem. Our
PMAX-SAT variant of Camacho and Mcllraith [4]’s method produced highly accurate
formulas on large and noisy trace sets where the original method timed out. However, our
PMAX-SAT variant was unable to completely escape the scalability issues that arise in SAT
solving. The method could only produce formulas up to length 3 in the allotted time.

NeurallLTL;, on the other hand, had no problem producing larger formulas in the
allotted time. The larger formulas more closely matched the complexity of the target
formulas and were more accurate on the test data. However, sometimes the formulas
NeurallLTL; produced were too large and overfit the data. We minimized this behavior by
comparing the lengths of formulas learned by multiple network architectures on a given
trace set.

Another weakness of NeuralLTL; comes from the information lost in the discretization
of a continuous network during the formula extraction procedure. However, by annealing
the activation functions and using random restarts, we were able to reduce the performance
gap between the continuous network and discrete formula. The LTL; formulas output by
NeuralLTL; were on average only 1% less accurate than the networks they were extracted
from.

Finally, the formula extraction procedure for NeuralLTL; has its own scalability issues.
The temporal truth table we create during the procedure is exponentially large in the input
variables (either the original propositions or the previous layer’s output). Constructing
and minimizing the table can be a significant bottleneck. However, the runtime of the
extraction procedure does not depend on the number of traces in the dataset unlike the
SAT-based methods. Additionally, as shown in our experiments, NeurallLTL still scales to
producing larger formulas than the SAT-based methods.

Reducing the expressiveness of NeurallL TL filters would be an intriguing direction
for further research. Less expressive filters would reduce the risk of overfitting with
large formulas and potentially allow for a more efficient formula extraction procedure.
More broadly, NeurallLTL; demonstrates a technique for modifying a neural network
for the extraction of symbolic representations and forms a basis for further research in
neurosymbolic artificial intelligence.
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6 Appendix

Here we provide a proof that using Spot in our experiments was valid.

6.1 Using Spot for LTL; Simplification

Spot is a library we use to simplify formulas extracted from NeuralLTL; networks [10].
However, Spot is designed for LTL not LTLy, so its use requires justification. We show any
simplication rule that is valid for qualitative LTL is also valid for qualitative LTL;. Since we
only test qualitative formulas in our experiments, using Spot for simplification does not
introduce any invalid simplifications.

Given a trace , 7, is the truth assignment at timestep ¢ and 7; denotes that a timestep
is repeated infinitely. We first prove the following useful lemma.

Lemma 1. Take a finite trace m/ = m...m,, and repeat the last timestep to create an infinite trace,
7 = mo... 17 Then given a qualitative formula ¢, 7/ satisfies ¢ interpreted as LTL if and only
if ™ satisfies ¢ interpreted as LTL. That is, my...m, = ¢ <= ... Ty 17n E ¢

Proof. Qualitative LTL and LTL; formulas are stutter-invariant, so repeating timesteps or
removing timesteps does not change the truth value of a trace [22]. O

Theorem 3. All qualitative LTL rewritings are also valid LTL; rewritings.

Proof. Consider the qualitative LTL rewriting ¢ = «. That is, for infinite traces 7' = ¢ <=
7 |= 1. We want to show for LTL on finite traces 7/ = ¢ < 7/ | 4.

Take a finite trace 7f = my...7,. By Lemma 1, if m...m,, = ¢, then the infinite trace
To...Tn—17 = ¢. Then because ¢ = 1, we have mg...m,_17, = ¢. Again by Lemma 1, the
finite trace my...m, = 9. Thus, for every finite trace 7/ = ¢ = =/ & 9. The same
argument applies to show 7/ = ¢ = 7/ = ¢. Son/ ¢ <= 7/ |= ¢ and the rewriting
¢ = isvalid for LTL;. ]

Because all qualitative LTL rewritings are also valid LTL; rewritings, our use of Spot is
valid.
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